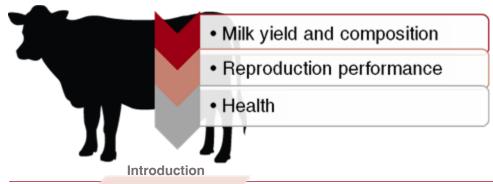




# Genetic aspects of milk β-hydroxybutyrate in Italian Holstein cows

A. Benedet<sup>1</sup>, A. Costa<sup>1</sup>, M. Penasa<sup>1</sup>, M. Cassandro<sup>1</sup>, R. Finocchiaro<sup>2</sup>, M. Marusi<sup>2</sup>, R. Negrini<sup>3</sup>, M. De Marchi<sup>1</sup>


<sup>1</sup>Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova

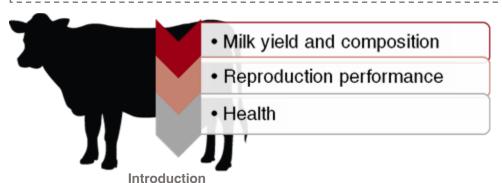
<sup>2</sup> Associazione Nazionale Allevatori Frisona Italiana (ANAFI), Cremona, Italy <sup>3</sup> Associazione Italiana Allevatori (AIA), Roma, Italy

#### What is ketosis?

- A frequent metabolic disorder in dairy cattle.
- It occurs when the cow is unable to cope with the high energy demand for milk production in early lactation.
- Abnormal concentration of circulating ketone bodies (hyperketonemia).

(Herdt, 2000; Duffield et al., 2009; Berge & Vertenten, 2014)








#### What is ketosis?

- A frequent metabolic disorder in dairy cattle.
- It occurs when the cow is unable to cope with the high energy demand for milk production in early lactation.
- Abnormal concentration of circulating ketone bodies (hyperketonemia).

(Herdt, 2000; Duffield et al., 2009; Berge & Vertenten, 2014)



Relevant economic losses for farmers
US\$289 per case

(McArt et al., 2015)





### Ketosis can be ...

#### Clinical

- Decrease in milk yield
- Sweet-smelling breath
- Reduced feed intake and appetite
- Reduced activity and changes in behavior
- Excessive loss of body condition
- Constipation or hard/dry feces
- Nervous signs

(Berge & Vertenten, 2014)

#### Subclinical

- Hyperketonemia
- Absence of clinical signs
- More frequent than clinical ketosis

(Andersson, 1988; Duffiled et al., 2009; Suthar et al., 2013)

Introduction





### Ketosis can be ...

#### Clinical

- Decrease in milk yield
- Sweet-smelling breath
- Reduced feed intake and appetite
- Reduced activity and changes in behavior
- Excessive loss of body condition
- Constipation or hard/dry feces
- Nervous signs

(Berge & Vertenten, 2014)

#### Subclinical

- Hyperketonemia
- Absence of clinical signs
- More frequent than clinical ketosis

(Andersson, 1988; Duffiled et al., 2009; Suthar et al., 2013)

Prevalence in Italy 30-40%

Introduction





# Ketosis diagnosis

 Through the measurement of β-hydroxybutyrate (BHB) concentration in body fluids of dairy cows

#### **BLOOD BHB**

- Reference method
- Ketosis ≥ 1.2 mmol/L

#### **MILK BHB**

More practical tool

BHB in milk can be routinely predicted by MIR spectroscopy for screening hyperketonemia

Introduction

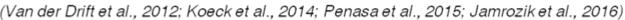
(Oetzel, 2004; van Knegsel et al., 2010; Denis-Robichaud et al., 2014; Koeck et al., 2014)





# Ketosis and genetics




Milk BHB has been demonstrated to be a heritable trait -> selection to reduce susceptibility to ketosis is possible



Italy

Paucity of studies that assessed genetic parameters of milk BHB in Italian dairy cattle population









### Aim

To estimate heritability and repeatability of milk BHB and its genetic correlations with milk production and composition traits in Italian Holstein dairy cattle

Introduction

Aim





#### Data

#### Sample collection

- 67,131 individual milk samples from May 2015 to June 2017.
- 21,223 cows (parity 1 to 9): at least 2 tests between 5 and 100 DIM.
- 3,488 herd-test-date (HTD): at least 5 cows per HTD.
- 261 herds in Veneto region (northeast Italy): subset of 30% of herds.
- 79,539 individuals in pedigree file: cows and ancestors up to 6 generations back.

#### Milk analysis

Milk samples were analysed using FTIR prediction models provided by FOSS (Application Note 35 – Ketosis)

Introduction

Aim

Mat & Met





# Statistical analysis

- Single-trait repeatability animal model to estimate heritability and repeatability.
- Bivariate models to assess genetic correlations between milk BHB, yield, fat, protein, fat to protein ratio (F:P), lactose, urea and SCS\*.

$$y = Xb + Za + Wp + e$$

y = vector of observations for BHB and other test-day traits;

b = vector of fixed effects

 $\log_{e}[BHB(mmol/L) +1]$ 

- Parity = 5 levels
- DIM = 15 classes
- Season of calving = winter, spring, summer and autumn
- HTD = 3,488 levels

a = vector of random animal additive genetic effects

p = vector of random permanent environmental effects

e = vector of random residuals

X, Z, W = incidence matrices

Introduction

Aim

Mat & Met

\*SCS = 3+log<sub>2</sub>(SCC/100,000)





# Descriptive statistics

Descriptive statistics of  $\log_e$ -transformed milk  $\beta$ -hydroxybutyrate (BHB), milk yield, composition traits and somatic cell score (SCS) in the first 100 days in milk (n = 67,131).

| Trait            | Mean  | SD    | Minimum | Maximum |  |
|------------------|-------|-------|---------|---------|--|
| BHB              | 0.059 | 0.059 | 0       | 1.043   |  |
| Milk yield, kg/d | 37.38 | 9.42  | 4.10    | 64.70   |  |
| Fat, %           | 3.71  | 0.79  | 0.90    | 6.84    |  |
| Protein, %       | 3.10  | 0.32  | 2.00    | 4.89    |  |
| F:P <sup>1</sup> | 1.20  | 0.25  | 0.26    | 2.90    |  |
| Lactose, %       | 4.92  | 0.19  | 4.04    | 5.61    |  |
| Urea, mg/dL      | 22.65 | 6.06  | 10.00   | 66.30   |  |
| SCS              | 2.50  | 2.04  | -3.64   | 10.79   |  |

 $<sup>^{1}</sup>$  F:P = fat-to-protein ratio.





# Heritability and repeatability

Estimates<sup>1</sup> of additive genetic variance ( $\sigma_a^2$ ), heritability and repeatability for  $\log_e$ -transformed milk  $\beta$ -hydroxybutyrate (BHB), milk yield, composition traits, and somatic cell score (SCS) in the first 100 days in milk.

| Trait            | $\sigma_a^2$ | Heritability | Repeatability |
|------------------|--------------|--------------|---------------|
| BHB              | 0.00012      | 0.08         | 0.20          |
| Milk yield, kg/d | 4.29366      | 0.09         | 0.45          |
| Fat, %           | 0.05511      | 0.12         | 0.24          |
| Protein, %       | 0.01621      | 0.25         | 0.48          |
| F:P <sup>2</sup> | 0.00355      | 0.07         | 0.19          |
| Lactose, %       | 0.00894      | 0.34         | 0.51          |
| Urea, mg/dL      | 2.24204      | 0.12         | 0.28          |
| SCS              | 0.20814      | 0.06         | 0.39          |

<sup>&</sup>lt;sup>1</sup> Standard errors ranged from 0.00001 to 0.48461 for additive genetic variance, 0.008 to 0.0015 for heritability, 0.0045 to 0.0050 for repeatability.





 $<sup>^{2}</sup>$  F:P = fat-to-protein ratio.

# Heritability and repeatability

Estimates<sup>1</sup> of additive genetic variance ( $\sigma_a^2$ ), heritability and repeatability for  $\log_e$ -transformed milk  $\beta$ -hydroxybutyrate (BHB), milk yield, composition traits, and somatic cell score (SCS) in the first 100 days in milk.

| Trait            | $\sigma_a^2$ | Heritability | Repeatability |  |
|------------------|--------------|--------------|---------------|--|
| BHB              | 0.00012      | 0.08         | 0.20          |  |
| Milk yield, kg/d | 4.29366      | 0.09         | 0.45          |  |
| Fat, %           | 0.05511      | 0.12         | 0.24          |  |
| Protein, %       | 0.01621      | 0.25         | 0.48          |  |
| F:P <sup>2</sup> | 0.00355      | 0.07         | 0.19          |  |
| Lactose, %       | 0.00894      | 0.34         | 0.51          |  |
| Urea, mg/dL      | 2.24204      | 0.12         | 0.28          |  |
| SCS              | 0.20814      | 0.06         | 0.39          |  |

<sup>&</sup>lt;sup>1</sup> Standard errors ranged from 0.00001 to 0.48461 for additive genetic variance, 0.008 to 0.0015 for heritability, 0.0045 to 0.0050 for repeatability.





 $<sup>^{2}</sup>$  F:P = fat-to-protein ratio.

# Heritability and repeatability

Estimates<sup>1</sup> of additive genetic variance ( $\sigma_a^2$ ), heritability and repeatability for  $\log_e$ -transformed milk  $\beta$ -hydroxybutyrate (BHB), milk yield, composition traits, and somatic cell score (SCS) in the first 100 days in milk.

| Trait            | $\sigma_a^2$ | Heritability | Repeatability |
|------------------|--------------|--------------|---------------|
| BHB              | 0.00012      | 0.08         | 0.20          |
| Milk yield, kg/d | 4.29366      | 0.09         | 0.45          |
| Fat, %           | 0.05511      | 0.12         | 0.24          |
| Protein, %       | 0.01621      | 0.25         | 0.48          |
| F:P <sup>2</sup> | 0.00355      | 0.07         | 0.19          |
| Lactose, %       | 0.00894      | 0.34         | 0.51          |
| Urea, mg/dL      | 2.24204      | 0.12         | 0.28          |
| SCS              | 0.20814      | 0.06         | 0.39          |

<sup>&</sup>lt;sup>1</sup> Standard errors ranged from 0.00001 to 0.48461 for additive genetic variance, 0.008 to 0.0015 for heritability, 0.0045 to 0.0050 for repeatability.





 $<sup>^{2}</sup>$  F:P = fat-to-protein ratio.

Genetic correlations between BHB, milk yield, composition traits, and somatic cell score (SCS) in the first 100 days in milk.

| Trait            | Milk yield | Fat   | Protein | F:P   | Lactose | Urea  | SCS   |
|------------------|------------|-------|---------|-------|---------|-------|-------|
| BHB              | 0.07       | 0.21  | -0.12   | 0.33  | -0.08   | -0.07 | 0.16  |
| Milk yield       |            | -0.31 | -0.48   | -0.04 | -0.25   | -0.11 | 0.08  |
| Fat              |            |       | 0.64    | 0.77  | 0.09    | 0.15  | 0.14  |
| Protein          |            |       |         | -0.01 | 0.20    | 0.01  | -0.00 |
| F:P <sup>2</sup> |            |       |         |       | -0.04   | 0.18  | 0.14  |
| Lactose          |            |       |         |       |         | -0.12 | -0.13 |
| Urea             |            |       |         |       |         |       | 0.10  |

 $<sup>^{2}</sup>$  F:P = fat-to-protein ratio.





Genetic correlations between BHB, milk yield, composition traits, and somatic cell score (SCS) in the first 100 days in milk.

| Trait            | Milk yield | Fat   | Protein | F:P   | Lactose | Urea  | SCS   |
|------------------|------------|-------|---------|-------|---------|-------|-------|
| BHB              | 0.07       | 0.21  | -0.12   | 0.33  | -0.08   | -0.07 | 0.16  |
| Milk yield       |            | -0.31 | -0.48   | -0.04 | -0.25   | -0.11 | 0.08  |
| Fat              |            |       | 0.64    | 0.77  | 0.09    | 0.15  | 0.14  |
| Protein          |            |       |         | -0.01 | 0.20    | 0.01  | -0.00 |
| F:P <sup>2</sup> |            |       |         |       | -0.04   | 0.18  | 0.14  |
| Lactose          |            |       |         |       |         | -0.12 | -0.13 |
| Urea             |            |       |         |       |         |       | 0.10  |

 $<sup>^{2}</sup>$  F:P = fat-to-protein ratio.





Genetic correlations between BHB, milk yield, composition traits, and somatic cell score (SCS) in the first 100 days in milk.

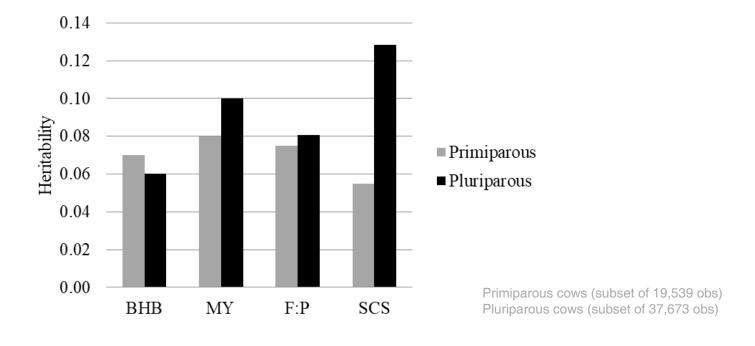
| Trait            | Milk yield | Fat   | Protein | F:P   | Lactose | Urea  | SCS   |
|------------------|------------|-------|---------|-------|---------|-------|-------|
| BHB              | 0.07       | 0.21  | -0.12   | 0.33  | -0.08   | -0.07 | 0.16  |
| Milk yield       |            | -0.31 | -0.48   | -0.04 | -0.25   | -0.11 | 0.08  |
| Fat              |            |       | 0.64    | 0.77  | 0.09    | 0.15  | 0.14  |
| Protein          |            |       |         | -0.01 | 0.20    | 0.01  | -0.00 |
| F:P <sup>2</sup> |            |       |         |       | -0.04   | 0.18  | 0.14  |
| Lactose          |            |       |         |       |         | -0.12 | -0.13 |
| Urea             |            |       |         |       |         |       | 0.10  |

 $<sup>^{2}</sup>$  F:P = fat-to-protein ratio.





Genetic correlations between BHB, milk yield, composition traits, and somatic cell score (SCS) in the first 100 days in milk.


| Trait            | Milk yield | Fat   | Protein | F:P   | Lactose | Urea  | SCS   |
|------------------|------------|-------|---------|-------|---------|-------|-------|
| BHB              | 0.07       | 0.21  | -0.12   | 0.33  | -0.08   | -0.07 | 0.16  |
| Milk yield       |            | -0.31 | -0.48   | -0.04 | -0.25   | -0.11 | 0.08  |
| Fat              |            |       | 0.64    | 0.77  | 0.09    | 0.15  | 0.14  |
| Protein          |            |       |         | -0.01 | 0.20    | 0.01  | -0.00 |
| F:P <sup>2</sup> |            |       |         |       | -0.04   | 0.18  | 0.14  |
| Lactose          |            |       |         |       |         | -0.12 | -0.13 |
| Urea             |            |       |         |       |         |       | 0.10  |

 $<sup>^{2}</sup>$  F:P = fat-to-protein ratio.



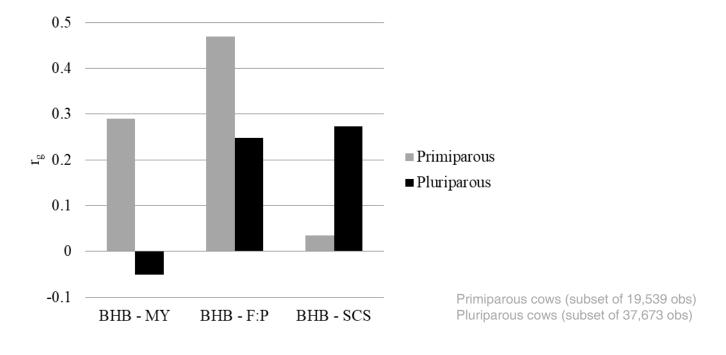


# Heritability at different parity order



Results




Introduction



Mat & Met

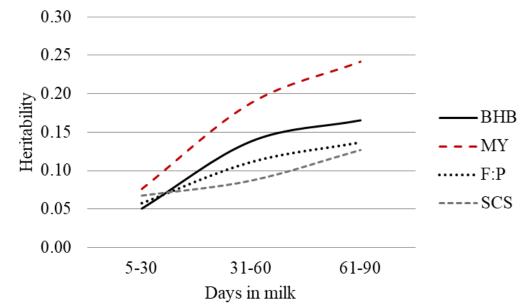
Aim

# Genetic correlations at different parity order



Results




Introduction



Mat & Met

Aim

# Heritability at different days in milk



Early DIM (subset of 13,328 obs) Middle DIM (subset of 17,035 obs) Late DIM (subset of 20,014 obs)





### Conclusions

 Milk BHB routinely determined in test-day milk samples exhibits genetic variation, with increasing average heritability estimates moving from 5 to 100 DIM.

 Milk BHB was positively genetically associated with MY and F:P (primiparous cows) and with SCS (pluriparous cows).

 Further research will investigate/simulate possible scenarios of including milk BHB in selection index of Italian Holstein breed.

Introduction Aim Mat & Met Results Conclusions







**11**th

11–16 February 2018 Aotea Centre Auckland New Zealand

WORLD CONGRESS
ON GENETICS
APPLIED TO
LIVESTOCK PRODUCTION

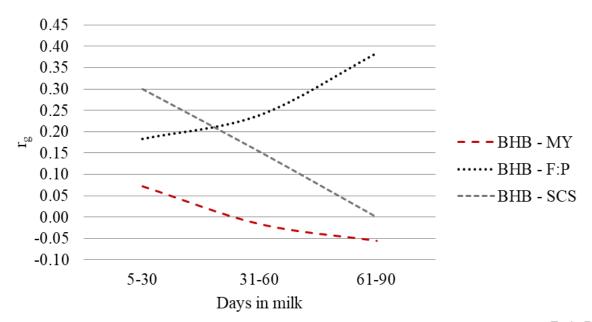
wcgalp.com



## **THANK YOU!**

anna.benedet@phd.unipd.it University of Padova






Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE)





# Genetic correlations at different days in milk



Early DIM (subset of 13,328 obs) Middle DIM (subset of 17,035 obs) Late DIM (subset of 20,014 obs)



